Windows Applications Programming

Using Windows Forms and Microsoft .NET

LIVIU-ADRIAN COTFAS

Windows Applications Programming

Using Windows Forms and Microsoft .NET

Y,

EDITURA UNIVERSITARA
Bucuresti

Colectia STIINTE EXACTE

Redactor: Gheorghe Iovan
Tehnoredactor: Ameluta Visan
Coperta: Monica Balaban

Editura recunoscuta de Consiliul National al Cercetarii Stiingifice (C.N.C.S.) si inclusd de Consiliul
National de Atestare a Titlurilor, Diplomelor si Certificatelor Universitare (C.N.A.T.D.C.U.) in
categoria editurilor de prestigiu recunoscut.

Descrierea CIP a Bibliotecii Nationale a Romaniei
COTFAS, LIVIU-ADRIAN

Windows applications programming / Liviu-Adrian Cotfas. —
Bucuresti : Editura Universitara, 2021

Contine bibliografie

ISBN 978-606-28-1295-9

004

DOI: (Digital Object Identifier): 10.5682/9786062812959

© Toate drepturile asupra acestei lucrari sunt rezervate, nicio parte din aceastd lucrare nu poate fi
copiata fara acordul autorului

Copyright © 2021

Editura Universitara

Editor: Vasile Muscalu

B-dul. N. Bélcescu nr. 27-33, Sector 1, Bucuresti
Tel.: 021.315.32.47

www.editurauniversitara.ro

e-mail: redactia@editurauniversitara.ro

Distributie: tel.: 021.315.32.47 / 0745 200 718/ 0745 200 357
comenzi@editurauniversitara.ro
www.editurauniversitara.ro

Contents

PrEface . ..o e 9
1. C# & .NET Framework Basicsccccooviiiiiiiiiniiiiiiieececeeeee 11
L1, ODJECHIVES .eeuviieniieeiieetie ettt ettt eae et ee st e et e siaeebeesnseensaens 11
1.2, INtrOAUCHION ...oouiiiiiieiie ettt et 11
1.3. Comparison With CH+c.ooiiiiiiiiiieiieeee e 13
1.4, First CH Programccccoecieriieiienie et eiee e seee e 14
1.5. Reading and Writing using System.Console...........ccccceevueerrrennn 15
1.6. Specifying an Application Error Codecccceevveevciieencieeenniennee, 16
1.7. Processing Command-Line Arguments..........cc.cceeeveeieerueenveennens 16
2. DaAta TYPES coeeeieiiiieeiie ettt e n 19
2.1, ODBJECHIVES .uvveeiiieeeiiieeeiieeeiieeeiieeeriteeeteeeeateesreeessseeesaeeesnseeensseeens 19
2.2, DAt TYPES..ueeeeuieeeiieeeiieeeiie ettt ettt ettt e sabee e aee e s 19
2.3, SYStEM.ODJECL....eietiieiieiieeii ettt et 23
2.4. Working With StrNgScccveeeviieeiiieeieeeee e 23
2.5, ATTAYS oetiieiiee ettt ettt et ettt ettt e st e st eesneeeea 26
2.6. Multidimensional ATTays..........ccccveerieeriienieeiieenieeieesiee e 28
3. CreatiNg TYPES c.vveeeiieeeiieeeiieeeiee et ettt et e tee e s e e s aeeessreeesnseeeaaeeenns 31
R B 0] o] <o R RRTRR 31
320 BNUMS ettt st 31
3.3, SHUCKUTES ..ttt ettt 32
34, CLASSES ittt ettt sttt e 33
3.5. Standard INterfacesccoceeviieiiieiiieiieieee e 37
3.6, OPETALOTS .oueeeieeeeiiiieeeeieee e ettt e e et e e e ettt eeeenreeeessnnaeeeeennsaeeeennnns 42
3.7. Class INheritancecoecueeiuieiiiiiiiniieieeeieeee e 44
4. COILECLIONS ...eeevieniieeiiieiie ettt ettt ettt ettt e et eebe e bt e e nbeenseeenseas 51
O I @ 10} 15707 5 AR 51
AR § ;74 5] A USSR 51

4.3, LISET™> e 52

4.4, Custom CollECHONSccueeriieiiieeiieiieeie ettt 54
5. Windows Forms — Introduction, Menus, Events............ccccoevvuvvvvenennnn. 59
5.1 ODJECHIVES ..uiieeiieiieeiiteeite ettt ettt ste et e s e ebeeseaeebeesnneenseens 59
5.2. Forms and Partial Classes..........cccevveeriienieeiiienieeiiesieeieesee e 59
5.3 MENUS ..ttt ettt et e e e e e e e e e ntaeeeeennee 61
5.4, MoUSE EVENLS ...cooiiiiiiiiiiiiiceeeeeeeeee et 62
5.5. Keyboard EVENtSc.ccccuiviiieiiiiiiieieciceeie et 63
6. Windows Forms — Validation, Exceptions, ListView, TreeView......... 65
0.1, ODJECHIVES ..uviieiiieiieeitieeiee ettt ettt ettt ettt e e saae b e ssneenseens 65
6.2. Data Validation............ccceeeiieniieeiieiieeieeie et 65
0.3, LASEVICW ..oiiiiiiiiieciiceteeee ettt et saae e e ssaeenneen 67
0.4, TTEEVICW ..evviiiiieiieeiie ettt ettt ettt aae et seaesbeesnea e 71
6.5. Exception Handling...........ccoooieiiiiiiiniiiiiencceeeeeee e 72
6.6. Standard EXCEPtiONScccueeeiiiieiiieeiieeeiie ettt e 74
7. Windows Forms — Serialization, Text FileS......cccoovvvviiiiiiiiiiiiiiiieiennenne 77
7.1, ODJECHIVES ..uiieiiieiieeiiieeiee et eeite ettt et stteebeesaaeebeesaaeenbeessneenseens 77
7.2. Serialization/Deserializationcccceeecueeeriieeenieeeriie e 77
7.3. Binary Serialization...........cccoocveeeiieriieiiienieeieesie e 78
7.4, XML SerialiZation.........cccecuverieeiiienieeiienie et see e seae e 80
7.5, TeXLFIIES c.uuviieiie et e 81
8. Windows Forms — Dialog@s.........cccuevuieniiiiiieniieeiieiieeieeee e 83
8. 1. ODJECLIVES ...vieeiieiiieeiieeite ettt ettt ettt eesane e 83
8.2. MessageBox and DialogResultccccoeeiieniiieniiiicieeeeee, 83
8.3. Secondary DiIalogcccueeuieriieiiieiiieiieee e 85
9. Windows Forms — DataBinding and Unit Testing............cccccceevuvennnenne 91
9.1, ODBJECHIVES ...vveeeiieeciiieeeiee et e ettt e ete e et e e et e e sveeesaeeesseeesnseeennseeens 91
9.2, DataBinding.........cc.eevieriieriiieiieiieeie ettt 91
0.3, UNIt TESHNE ...eeviieiiieiieeiieiie ettt ettt sae e e seaeenneens 97
10. Windows Forms — Databases..........ccceecuvveeiiieeniiieeniie e 99

LO. 1. ODJECHIVES ..eeuvieiiieiiieeiieeiie et eiee ettt eeteetee e eeeesiaeebeesaeeeseens 99

10.2. Databasesc.ceveeeiierieeiieniieeiiesieeieesee et esresteesieeebeeseneeseens 99
10.3. Creating the database...........cccccveeeviieeriieeieecee e 103
10.4. Connected Data Access Architectureocceeeeeeevuveeveenneennen. 103
10.5. Disconnected Data Access Architecture..........cceevuverieenennen. 113
11. Windows Forms — Custom Controls, Drawing............c.cccecveeeeveeenneen. 119
L1.1. ODBJECHIVES .eeeurieiieeiiieiie ettt ettt ettt 119
11.2. Extended Controls..........cceeeuierieniienieiiieieeieeee e 119
11.3. Composite CONLIOLS ...ccvvreerieeeiieeeieeeeiee e eree e 120
11.4. Custom Controls + Drawing............ccceeceeeviieviiencieeniienieeeeeene. 122
12. Windows Forms — Printingcccecceevieeiiieniieniieniecieeeie e 131
12. 1. ODJECHIVES ..uuvieeeiieeiiieeiieeeieeeeieeesteeesteeeseeeeaeeesseeessseeeesseeens 131
12,2, PrINENEZ..ceiiiiiieiiieieeieecee ettt ettt e e 131
13. Windows Forms — Drag and Dropcccecceeviieniieniieciienieeieeeeeen 141
13. 1. ODJECHIVES ..uuvieeiiieeiiieeiieecieeeeieeesteeeseteeeeveeeaeeesaeeesnseeeenseeens 141
13.2. Drag and DIOPcccoevieeiieiiieiieeiiecie ettt 141
Bibliography.....c..coooiiiiiieiieie e 145
ANNEX 1 - LiSt Of FIUIES ...oeeeiiiiieiiiecieeceeete e 149
ANNex 2 - List 0f Tables.....cccoiiiiiiiiiiieiieeieeece e 151

PREFACE

The book serves as lecture support for the Windows Applications
Programming course taught at the Bucharest University of Economic
Studies. It can also be a relevant reference for software developers focusing
on developing Windows applications and for any other person interested to
gain further insights into building Windows Forms applications.

The code associated to the examples in this book is available on GitHub in
the repository https://github.com/liviucotfas/ase-windows-applications-

programming .

1. C# & .NET FRAMEWORK
BASICS

1.1. Objectives

o understand the basic structure of a Console application.
e decompile a .NET application.

e read and write information from/to the Console.

1.2. Introduction

C# has been developed around 2002 by Microsoft, as a general-purpose,
type-safe, platform neutral, object-oriented programming language [1]. The
core objective of the language is developer productivity. The language
follows the C and C++ syntax and has been designed to allow the
development of a wide variety of applications using the Microsoft .NET
Framework. The .NET Framework is composed from a Comon Language
Runtime (CLR) and a comprehensive set of libraries.

The CLR is the runtime that handles the execution of managed code in the
context of the .NET Framework and that provides a layer of abstraction
between the application and the operating system. Managed code is
represented in Intermediate Language (IL), into which the applications
written in one of the managed languages are converted when compiled.
Alongside C#, other managed languages that get compiled into managed
code include F#, Visual Basic .NET, Managed C++, Delphi .NET and J#.
The IL code is stored, together with metadata, in assemblies, which can be
either executable files (.exe) or libraries (.dll). The code in the assemblies is

11

CPU independent. Thus, when the CLR loads an assembly, it prepares it for
execution by converting the IL code into native code, such as x86. The
conversion is performed by the Just-In-Time (JIT) compiler component of
the runtime. In order to improve performance, the JIT compiler does not
convert the entire assembly to native code, but the conversion rather
happens on an as-needed basis. Afterwards, when a method is called, the
runtime first checks if the code for the method has already been converted
and placed in the cache.

The CLR also manages the code execution, the user-level security, the
automatic allocation and release of memory, while also providing structured
exception handling.

In order to facilitate the development of .NET applications using different
managed languages, the CLR employees a Common Type System (CTS)
and a Common Language Specification (CLS). CTS is used to describe all
the possible data types and programming constructs supported by the
runtime. CLS is a subset of CTS defining a subset of features that should be
supported by any managed language designed for .NET. Thanks to the fact
that code written in any managed language is converted to IL, it becomes
possible to mix in the same application classes written using different
managed languages.

While in the past .NET applications have commonly been restricted to the
Windows operating system, with the introduction of .NET Core, it has
become possible to run certain types of .NET applications on Linux,
macOS, Android, 10S, tvOS and watchOS as well. With the help of
Xamarin, .NET applications can also run on Samsung Smart TVs, running
the Tizen operating system [2]. The supported processor architectures are
arm32, arm 64, x86 and x64. The framework is capable of providing access
to platform-specific capabilities, such as the APIs provided by different
operating systems.

The main types of applications that can be developed using C# and the
NET framework are shown in Figure 1 and include web applications,
mobile applications, desktop applications, cloud applications, games and
machine learning applications.

12

<>

Web Mobile Desktop
ASPNET Xamarin
Cloud Games Machine Learning
Microsoft Azure Unity ML.NET

Figure 1. Types of applications that can be developed using C# and .NET

The full API can be browsed online, by accessing the website
docs.microsoft.com/en-us/dotnet/api . Additionally, a wide variety of
official samples are available at https://code.msdn.microsoft.com .

While .NET applications can be written using any text editor, the
recommended integrated development environments are Visual Studio
(Windows), Visual Studio Code (Windows, macOS, and Linux) and Visual
Studio for Mac (macOS).

1.3. Comparison with C++

In C#, global methods and variables are not supported. Thus, methods and
variables must be contained within a class or a structure.

The Main method, the point where the execution of the program begins, is
capitalized in C# [3] and needs to always have the static modifier, as shown
in Figure 2.

private static void Main(string[] args)

{
//HelloWorld application
Console.WriteLine("Hello World!™);
Console.ReadlLine();

} //end main

Figure 2. Main method in a C# application

Multiple inheritance has not been implemented in NET. This choice has
been made in order to avoid various issues related to this development

13

approach [3]. Thus, a class can inherit from only one base class, but can
implement any number of interfaces, as shown in Figure 3 [4].

S S St W w
2

Multiple inheritance — C++ Simple inheritance — C#

Figure 3. Multiple and simple inheritance

While in the case of C/C++ the memory allocation in the heap must be
handled by the software developer, .NET implement a mechanism called
Garbage Collector (GC) which automatically allocated and releases
memory.

1.4. First C# Program

The execution of every C# application begins in a method called Main.
There should only be one such method insider an application. Observations:

e in C# the Main method is capitalized, while in the case of Java,
lowercase main is used;

e note the static modifier which has a similar behavior to C++.

Activity:
1. Create a new Microsoft .NET Project in Visual Studio;

2. Update the content of the Program class in order to match the code
included in Figure 4

using System; //referenced namespace
namespace NameSpaceProgram

{

internal class Program

{

private static void Main(string[] args)

{
//HelloWorld application

Console.WritelLine("Hello World!");

14

Console.ReadLine();
} //end main
}//end class
} //end namespace

Figure 4. Hello World application written in C#

The fact that the assemblies contain almost all the original source code
facilitates their inspection.

Activity:

1. Download dotPeak from https://www.jetbrains.com/decompiler/.

2. Decompile the HelloWorld application.

1.5. Reading and Writing using
System.Console

Data can be displayed in the operating system console with the help of the
Sysstem.Console' class. The Write and WriteLine methods of this class can
be used in order to write data to the standard output stream. Reading data
from the standard input stream can be performed with the help of the
Read and ReadLine methods.

Several approach for displaying the values of two variables are shown in
Figure 5.

int foo 10;

int bar 20;

//String concatenation:
Console.WritelLine("foo:
//Composite formatting:
Console.WriteLine("foo: {@©} bar: {1}", foo, bar);
Console.WriteLine("{1}, {o@}, {2}", 10, 20, 30);
//String interpolation: https://docs.microsoft.com/en-
us/dotnet/csharp/language-
reference/tokens/interpolated
Console.WriteLine($"{foo}{bar}");

//Format

Console.WritelLine("c format: {@:c}", foo0);

+ foo + " bar: "+ bar);

Figure 5. Writing data to the strandard output stream

! https://docs.microsoft.com/en-us/dotnet/api/system.console

15

1.6. Specifying an Application Error Code

The Main() method in a console application can return either int or void. An
int return type can be used in order to return a value to the application that
has called the console application [3].

Activity:

1.

1.7.

Replace the code from the previous activity with the following one.

static int Main()

{
Console.WriteLine("Hello World!");
Console.ReadlLine();
// you can return an error code
return -1;

}

Create the following batch script and call it from the Console.

@echo off

NameofTheExecutableFile

@if "%ERRORLEVEL%" == "@" goto ok
:error

echo There was an error!

echo return value = %ERRORLEVELY%
goto end

:ok

echo Everything ok!

echo return value = %ERRORLEVELY%
goto end

:end

echo All Done.

Processing Command-Line Arguments

The Main() method can receive command line arguments as a string array.
The argument is optional and can be omitted if the command line arguments
are not needed [3].

16

Activity:

1. Replace the code from the previous activity with the following one.

public static void Main(string[] arguments)
{
for(int i=0; i< arguments.Length; i++)
{
Console.WriteLine(arguments[i]);
}
}

2. Run the application using the Console as follows.

\Nameo-FTheExecutableFile.exe /argumentl -argument2

17

2. DATA TYPES

2.1. Objectives

o understanding the data types hierarchy.

o understanding the role of the System.Object class.

o understanding the particularities of the System.String class.
e working with arrays.

o working with multidimensional arrays.

2.2. Data Types

All the types®, including built-in simple types, such as bool or int are
ultimately derived from a common base type, which is System.Object, as
shown in Figure 6. The unified hierarchy of types provided by the
framework constitutes the Common Type System (CTS).

The types in CTS can be classified as either value types or reference types
[3]. Value types include enumerations and structures and are derived from
System.ValueType.

Value types® include the built-in numeric types, as well as other built-in
types, such as System.Boolean. Their value is stored on the stack and the
variables are removed when the execution of the application exits the scope
in which the variable has been declared. Since they are allocated on the

? https://docs.microsoft.com/en-us/dotnet/csharp/fundamentals/types/
3 https://docs.microsoft.com/en-us/dotnet/csharp/fundamentals/types/#value-types

19

stack, and not in the heap, such variables can be created and destroyed very

quickly.

Reference Types

System.Object

System.Enum System.ValueType

System.Type

System.String

System.Array

Value Types

System.Windows.Forms.Keys

All Enums

System.Int32 System.Boolean

All Structures

Figure 6. Reference and Value Types

Reference types' are declared using the keywords class, interface and
delegate and can inherit from any type, with the exception of the ones
derived from System.ValueType. Compared to value types, the moment
when the memory is deallocated is influenced by many factors [3]. A
comparison between characteristics of value types and reference types is

provided in Table 1.

Table 1. Comparison between Value Types and Reference Types

Value Types
Allocation Allocated on the stack.
Variable Can be created and
lifetime destroyed very quickly.

The lifetime is determined
by the defining scope.

Reference Types

Allocated in the managed
heap.

Have a lifetime that is
determined by a large
number of factors. They are
destroyed when they are
garbage collected.

* https://docs.microsoft.com/en-us/dotnet/csharp/fundamentals/types/#reference-types

20

