## Chapter I

# **Properties of the myocardium**

**The heart** pumps the blood along the vascular networks, providing the oxygen and nutrients needed by the organs and tissues and removes toxic substances. Thus, the cardiovascular system has three components with a functional role:

- 1. *HEART*, muscular organ, with a double pump function, the left heart having a role in maintaining the large circulation (of high pressure, systemic) and the right pump having a role in maintaining the pulmonary circulation;
- 2. *BLOOD*
- 3. vascular system:*systemic and pulmonary circulation*, connected in series. It constitutes of:
  - *arteries* which are blood vessels that distribute oxygenated blood:
    - *elastic type arteries* (large arteries: aorta, subclavian, carotid, iliac), with a conduction role; these transform the pulsatile blood flow (generated by the rhythmic activity of the heart) into a continuous flow;
    - *muscular type arteries* (medium arteries) involved in vasoconstriction and vasodilatation, constituting the resistance territory;
    - o arterioles and metaarterioles.
  - *capillaries and postcapillary venules* which play a role in carrying out the exchange between blood and tissues;

• *veins* – collect blood, ensuring its return to the heart and have the function of a blood reservoir, containing approximately 65% of the total blood volume.

From the inside out, the heart is made up of:

- *endocardium:* lines the cardiac chambers on the inside, having a protective role; it consists of cells similar to endothelial cells and, through direct contact with intracavitary blood, prevents the formation of thrombi through its smooth surface; it has the least vascularization among the three layers, being the first to be affected during ischemic processes;
- *myocardium* (heart muscle): ensures the pump function of the heart, being formed of modified muscle fibers, cardiomyocytes; it is more present at the level of the ventricular structures, especially at the level of the interventricular septum and the left ventricle;
- *pericardium:* it has the 2 layers, the serous (visceral), also known as the epicardium, and the fibrous (parietal) layer; these leaflets delimit the pericardial space which contains a small amount of pericardial fluid. The pericardium has a protective, fixing and mechanical role, reducing the friction of the cardiac walls.

The accumulation of **more than 50 ml** of liquid in the pericardial space is called **liquid pericarditis**, being frequently of neoplastic, tuberculous or autoimmune etiology. Clinically, it is manifested by precordial pain, pericardial friction, and diffuse changes appear on the ECG, such as: ST elevation with PR depression and global decrease in path amplitude (low voltage complexes).

#### **PROPERTIES OF THE MYOCARDIUM**

- EXCITABILITY/ bathmotropic function;
- AUTOMATISM / chronotropic function;
- CONDUCTIVITY/ dromotropic function;
- CONTRACTILITY/ inotropic function;
- RELAXATION/ lusitropic function.

## **Excitability (bathmotropic function)**

It is the property of the myocardial cell to respond to stimuli by producing a propagated action potential. The myocardial cell has a special property: it is excitable only in diastole to ensure the role of a rhythmic pump (in systole it is in the absolute refractory phase) - *the law of periodic inexcitability of the heart.* 

The membrane of the myocardial cell is polarized, because there is an unequal distribution of electrical charges on either side of the membrane, through the permanent activity of *membrane transport systems* at rest.

When a stimulus with threshold intensity acts on a myocardiocyte, structural changes occur in the canalicular proteins, causing them to open. The passage of ions through specific membrane channels generates ionic currents of two types:

- **Depolarizing current**, which causes the intracellular penetration of positive charges (Na, Ca), decreasing the electronegativity;
- *Repolarizing current*, which causes positive charges (K) to leave the cell, increasing the electronegativity inside the cell.

## Transmembrane transport systems are represented by:

## 1. Ion channels

## K channels

- **a.** *Inwardly rectifying potassium channels (Kir)* active in the resting phase; these are of several types:
  - **Kir (K1)** role in maintaining the resting potential around -90 mV;
  - KATP (ATP-dependent potassium channels), metabolically regulated: are stimulated (opened) by reduction of intracellular ATP (normal ATP levels block activation), producing membrane hyperpolarization (via K efflux):
    - in conditions of ischemia (ischemia is accompanied by ATP depletion), hyperpolarization causes a decrease in myocardial contractility,thus protecting it;
  - mediator-dependent potassium channels (Ex: adenosine, acetylcholine, etc.) are activated through specific receptors.

- **b.** *Voltage-gated potassium channels* are slowly activated after depolarization, playing a role in repolarization and determining the action potential duration:
  - outward transient potassium current (Ito): responsible for phase 1 of the AP;
  - the slow potassium channel, K<sub>s</sub> (slow);
  - fast potassium channel, Kr (fast);
  - ultrafast potassium channel, K<sub>ur</sub> (ultrarapid current), determines the shorter duration of AP, being present at the level of the atria.

**Voltage dependent Na channels** are active in phase 0 of rapid depolarization

## Voltage dependent Ca channels are of 2 types:

- a. *Type L* (long lasting)
  - have an activation threshold of -40 mV;
  - it activates slowly;
  - are found in:
    - working myocardial fibers
      => phase 2 of AP;
    - node cells => phase 0 of AP;
    - skeletal muscles => excitation-contraction coupling.

- b. Type T (transient)
  - have an activation threshold at more electronegative values of the membrane potential (< -40 mV);</li>
  - it activates quickly;
  - are found at the level of the NSA => repetitive BP discharges (diastolic depolarization).

## Non-selective ion channels:

- **a.** channels that mediate the *pacemaker current, If* (the funny current) and take part in the spontaneous diastolic depolarization of cells with automatism; this means that:
  - are activated by hyperpolarization;
  - cause the entry of intracellular Na+ (occasionally also the transfer of K+);

- ivabradine and acetylcholine inhibit these channels.
- **b.** channels that are *stretch activated*, permeable especially for Ca, are responsible for mechano-electrical feedback and have arrhythmogenic potential.

#### 2. Ion pumps - primary active transport systems

- a. ATP-ase dependent of Na and K
  - it is electrogenic: it actively introduces 2 K+ ions into the cell and removes 3 Na+ ions;
  - is inhibited by digitalis.
- b. ATP-ase dependent of Ca
  - forces cytoplasmic Ca out.

#### 3. Ion exchangers

- a. *the Na+/Ca++ exchanger* 
  - located especially at the level of the T-tubes;
  - is a voltage-sensitive system:
    - negative potentials (< -40 mV) expel Ca;
    - $\circ\,$  more positive potentials (> -40mV) introduce Ca into the cell.

#### **b.** *the Na+/H+ exchanger*

 intervenes in conditions of myocardial ischemia, protecting the heart from intracellular acidosis

#### Action potentials in the myocardium

Depending on the speed of depolarization, two types of myocardial fibers are differentiated:

- a. with *fast answer* atrial myocytes, Purkinje fibers and ventricular myocytes; AP has 5 distinct phases;
- **b.** with *slow answer* in ASN, AVN; AP is conducted in only 3 phases.

