
300

The 8th International Scientific Conference
eLearning and software for Education

Bucharest, April 26-27, 2012
10.5682/2066-026X-12-140

USING VISUAL ENVIRONMENTS AND INDIVIDUAL ASSIGNMENTS FOR
IMPROVING ALGORYTHMIC THINKING IN INTRODUCTORY

PROGRAMMING COURSES

Aharon YADIN
Management Information Systems Department, The Max Stern Academic College of Emek Yezreel, Israel

E-mail: aharony@yvc.ac.il

Abstract: Due to the elevated programming courses' failing rate in our department (45%) an action
research was initiated. As part of this action research, that was performed during four semesters
several course structures and learning tactics were examined. The evaluation methodology was simple
and based only on the percentage of failing students. The success achieved was attributed to two main
factors (1) using a visualization environment (Micro-world) for the whole duration of the course, which
helped in understanding the more complex and abstract issues, and (2) using individual assignments
that enforced better learning habits and development of individual algorithmic thinking. The paper
describes the various attempts, as well as the final structure, that reduced the failing students by over
77%.

Keywords: Algorithmic thinking, individual assignments, introductory programming courses.

I. .INTRODUCTION

This paper describes an action research for defining the right structure of an introductory
programming course that will increase algorithmic thinking and by that decrease the high course drop-
out rate.

Following the fast progress of technology, in recent years, and its wide integration in many
human activities, education has been changed as well. From mainly a teaching discipline in the past, it
transformed into an integrated learning environment that uses various technological tools and solution
for enhanced understanding. As a result, education has shifted from just content delivery to a
continuous process in which the students acquire facts and theories, through their own experience and
build the conceptual models representing their understanding (Dillon, 1987). Conceptual models,
sometimes referred to as mental models are considered the necessary building blocks for problem-
solving skills. These skills which are a significant part of introductory courses' outcome are also
required for succeeding in the modern society. The change, from teaching in which the instructor
assumes responsibility for content delivery, to learning where the responsibility is transferred to the
student is not new. This paradigm shift started over a decade ago and was addressed by many scholars
(Barr and Tagg, 1995; Bell and Lane, 1998; DuFour et al., 2005, to name a few) and was influenced
by the understanding that effective learning occurs when the students construct their own knowledge.
Following this understanding, at present, successful learning is viewed as a student-centered process in
which students are exposed to various events, explore and enhance their experience and knowledge.
This new perceived knowledge that is based on the students' own experience combined with already
existing knowledge, constructs new layers of understanding that modify, renew and enhance the
existing learners' conceptual models. With the massive technological integration in many aspects of
our lives, the traditional learning environment has changed as well. Currently, technology is not

301

confined any more only to the classroom. The wealth of available applications and the wide spread of
computers made it possible to extend the learning process and provide it on demand, anytime and
anywhere. The continuous process of learning that is based on adapting and enhancing one's own
conceptual models occurs in a variety of learning locations and by using technology it can be even in
virtual environments representing the real world.

II. .LEARNING THEORIES

Over the years, many researchers were involved in understanding and evaluating learning and
as a result many theories were developed. However, the learning theory that is widely used is the
constructivism theory, which is based on Piaget's theory of children's development. According to
Piaget, information and data are perceived through the various senses and maintained using "mental
structures" that represent knowledge. Based on this theory, every living creature constantly compares
its existing mental structures with the new received information in order to assess its validity. If the
new received information makes sense, it will be integrated into the existing mental structure (or
accommodated in Piaget's terms). This process of accommodation reaffirms and renews the mental
structure and sometimes it modifies and enhances it which represents learning. If, on the other hand,
the new information is very different, or contradicts the mental structure, it will be discarded or
changed so that it will fit the structure. If students are forced to "understand" the new information, for
example as it happens by delivery of content, but if it does not fit their mental structure, they will
memorize it without the proper understanding. This type of "learning" implies that it is not
conceptualized and will not contribute to future problem-solving capabilities. According to the
constructivism theory, learning is defined as integration of new experiences with the past mental
structures. As such, learning means changing these previous models with relevant new information
(Zhi-Feng et al., 2001). For the past 4 decades, cognitive researchers (Anderson, 1980; Squire, 1987;
Johnson, 1995; Biggs, 2003) have distinguished between two types of knowledge: declarative and
procedural. Declarative knowledge (also referred to as propositional knowledge) is defined as factual
information ("knowing that"), while procedural knowledge ("knowing how") is about how to perform
a specific task, or the skills required to operate in the environment. Before choosing the proper
teaching mechanisms, the instructor has to define the required learning outcomes and select the proper
activities that will help acquiring the two types of knowledge. The shift in the instructors' role from
teaching to facilitating learning is based on the understanding that teaching is not just transmission of
information to the students (declarative knowledge), but rather, it should be used to create various
relevant activities that will stimulate students and help them construct their own mental models
representing meaning. By using this learning theory, instead of delivering content, the instructor has to
define the learning environment, including activities, methods and assignments, so that it will enable
the students to acquire the required declarative as well as procedural knowledge.

The constructivist model is a learner-centered process in which the learning responsibility
relies on the students. In achieving the defined learning goals, students may be involved in both group
and individual learning activities. Many researchers however have reported that group learning is more
successful and helps the students build their understanding faster and more efficiently (Beckman,
1990; Cooper et al., 1990; Goodsell, et al., 1992). Group learning has had many different names: peer
learning, collaborative learning, team studying, collective learning, study or work group, etc.
However, according to Johnson et al. (1991), regardless of the name, all of these learning methods can
be categorized by three general types: (1) informal learning groups – which are formed ad hoc. This is
a one-time learning session for addressing a specific issue; (2) formal learning groups – which are
formed for a specific task, with a longer duration (for example a project). Such formal learning groups
usually require several meetings; and (3) study teams – which are formal learning groups, working
together for an even longer duration (whole semester, or the whole academic year). In many cases,
study teams form a social group in which the relationships among the team extend the study sessions.
However, although collaborative learning is more efficient and the study group and its social
interaction form a supportive learning environment, the learning (or accommodations in the mental

302

structures) and attaining knowledge remains an individual process. For that reason, some researchers
suggest structuring courses not only on collaborative study, but on cooperative study as well. In such
teams there is a greater emphasis on individual responsibility and accountability (Prince, 2004). This
and the introduction of technology supported collaborative learning systems that provide virtual and
remote collaboration, imply that students have to be more autonomous in their learning attitude
(Webster and Sudweeks, 2006).

III. .INTRODUCTORY PROGRAMMING COURSES

Undergraduate Introductory Computer Science (CS1) courses which represent the students'
first encounter with the professional computing world are often perceived by the students as
problematic based on the relatively high drop-out rates. Furthermore, the skills, both programming and
problem solving, acquired by the students after successfully completing these courses are often not
sufficient (Nikula et. al., 2007). These students' difficulties are not a new issue and were addressed by
many debates among researchers, scholars and educators. One of the explanations that was suggested
for these difficulties is the high degree of abstraction and complexity required when dealing with the
programming paradigm concepts (Robins, Rountree, & Rountree, 2003; Rich, Perry, & Guzdial,
2004). Other researchers suggest that the introductory courses have to only briefly address the
programming concepts, and to concentrate on algorithmic thinking. This means spending more time
training students on ways to find solution to problems (Forsyth, et.al. 1975, Futschek, 2006), instead
of concentrating on the programming language itself. As such, this approach uses a higher level of
abstraction, almost ignoring the specific programming language and focuses mainly on building and
enhancing the capabilities required for algorithm constructing (Miller and Ranum, 2005). By using the
constructivist theory definitions, this approach is about modifying or enhancing the mental models.
This debate on the issue of defining the most successful ways to tackle the CS1 courses is fueled by
the low students' enrollment which unfortunately, was not affected by the fact the market recovered
from the problems caused by the burst of the dot.com bubble. The decreased interest in the CS
(Computer Science) discipline (Nikula, 2007; Radenski, 2006) combined with the very high
(sometimes up to 50%) drop-out rates (Guzdial, 2003; Rich Perry, & Guzdial, 2004; Herrmann et al.,
2003; Nagappan et al., 2003) increased the urgency for various additional attempts to solve the
problem.

In dealing with the students' difficulties, several researchers claim that some of the modern
programming languages used for CS1 courses require the understanding and mastering of advanced
concepts at an early stage of the learning process. This means that the factual information required by
the CS1 courses interferes with the procedural knowledge. Students who cannot cope with this early
understanding are failing the course because they do not understand the more abstract programming
concepts (Miller and Ranum, 2005). For addressing these difficulties, some researchers and educators
started using visual environments in order to improve understanding some of the abstract concepts
related to programming and problem solving. For example, visual environments are used to illustrate
an abstract concept while changing it into a more concrete object. The visualization approach for
enhancing students' understanding is not new and it has been used to teach children in the late 70's, for
example by using LOGO (Feurzeig & Lukas, 1972; Fischer, 1973; Rubinstein, 1974; Cannara, 1976).
LOGO is a simple and basic programming language developed for learning by example or "discovery
learning". This learning and exploration environment was designed to stimulate cognitive development
and creativity. Visualization environments, tools and methodologies were later addressed as learning
by example or Micro-worlds (Papert, 1980; Dagdilelis and Satratzemi, 2001; Hoyles, Noss &
Adamson.2002; Sarama & Clements, 2002). These multimedia based Micro-worlds are small,
interactive and dynamic visual learning environments which represent a conceptual model of some
part of the real world. For better handling abstract issues, the model usually simplifies the real world
and makes it more understandable by using a concrete visual representation and by providing various
tools to explore or manipulate it (Hogle, 1995). The reason for implementing such mechanisms in
which first children and later students could develop algorithms without the usage, or knowledge of

303

formal programming language was explained by Eric Roberts: "In real-world programming languages
like C, there are so many details that learning about them tends to dominate the first few weeks of a
programming course. All too often, they become the focus of the course, and the much more critical
issues of problem solving get lost in the shuffle" (Roberts, 1995). The learning by example puts a
greater emphasis on the learning based on one's own experiences, which leads to developing the right
problem solving and algorithmic thinking skills, instead of mastering the specifics of a particular
programming language.

The fast technological advancements affected the visual environments as well and brought a
wealth of additional new tools that were addressing the students' difficulties and were aiming to solve
the problem. The new environments defined and designed a friendlier and gentler approach for
teaching programming. One such environment is "Karel the Robot" (Pattis, 1981) that was originally
introduced for teaching Pascal. This is a non-threatening, visual environment with a robot living in a
two dimensional world (Micro-world). The robot performs tasks that emphasize programming logic.
The student instructs the robot to successfully perform some pre-defined tasks while avoiding the
various obstacles presented in the world. By defining and controlling the robot activities, the student is
gradually exposed to the principles of a programming language. Furthermore, the environment
provides a solid foundation for developing problem solving methodologies such as logical deduction
and reasoning. The Karel environment was later migrated to support additional programming
language, especially Java (Becker, 2001; Buck and Stucki, 2001; Bergin, et.al. 2005) and Python.

IV. .THE STUDY

The current action research was performed during four semesters as part of the CS1 course.
The course is delivered during the first semester of the first year and represents the primary encounter
students have with programming, logic and problems solving. CS1 is intended to set the foundations
for the later more complex courses, however for students with no prior programming knowledge it is
difficult and represents a significant challenge. Our CS1 course is concentrating on procedural
programming, while the next programming courses concentrate on the Object Oriented paradigm. The
first programming language, used in this is course is Python, while next programming courses use
JAVA. During 2009 the course was taught on both semesters and on 2010 and 2011 only during the
first semester. The total number of students enrolled is relatively small and in addition there was a
large fluctuation in this number, as demonstrated by figure 1.

Figure 1. Number of students per semester

The problems associated with the our course were similar to problems reported by other

academic institutes, i.e. a relatively high drop-out rate and the students who successfully completed
the course possessed lower than expected programming and problem solving skills. Originally, the

304

course structure was simple and consisted of three hour lecture using Python, a two hours lab exercise
and an additional support course. Python is an easy-to-use interpreted language, yet powerful,
portable, object-oriented and open source. It can be used for writing stand alone programs, quick
scripts, and prototypes for large applications. In using Python, the aim was to concentrate more of
developing algorithms and improving problem solving skills (procedural knowledge) and less of the
language syntax and constructs (declarative knowledge). The support course was included mainly for
lowering the understanding barriers and helping students construct their mental models that represent
knowledge. The support course was a two hour lecture and lab, using "Karel the Robot" Micro-world.
The intension was to strengthen the algorithmic thinking capabilities and provide a visual environment
and an easier way of understanding. This visual environment was intended mainly for the more
abstract issues such as nested loops, nested conditions and recursion.

There are many academic institutes which use Micro-world environments as part of their
introductory programming courses. However, unlike other institutes that use the Karel environment
mainly during the first one or two lessons and just for preliminary understanding of basic
programming constructs, the structure we employed was based on a semester long usage. This way
Karel was used not only for understanding the basic programming constructs, but also for visualizing
some of the more complex concepts. Specially, we used the environment so that students will be able
to design and check various algorithms for solving problems while evaluating and debating among
themselves and in class each algorithm. Although students worked individually, the lab acted as a
formal learning group during the whole semester, in which the students worked individually, but
learned collectively.

Unfortunately, this course structure which was based on Python as the primary programming
language supported by a semester long usage of a visualization tool, had no positive effect in our case
and the percentage of the failing students was very high (43.1%). Due to these poor results an action
research study was initiated. The main idea was to find the best way for teaching the course. The only
dependent variable used to assess the success was the failing students' percentage. The action research
study was based on 3 evolutionary course versions (Table 1) and was run during 4 semesters.

In order to affirm the results obtained using the first course structure (Python and Karel the
Robot) the same structure was repeated during the second semester. Unfortunately, during the two
semesters in 2009, in which this structure was employed, the failing percentages were similar and very
high (43.1% and 45.8% see Figure 2). A thorough analysis which included discussions with students
regarding their difficulties revealed that "Karel the Robot", which initially was considered a
visualization tool for enhancing understanding, caused more confusion. The course lectures
concentrated on teaching procedural programming, while Karel is using an object oriented approach.
This difference not only did not provide the required assistance, but it even caused more
misunderstanding. Furthermore, although the two courses (CS1 and the support course) were two parts
of the same course, they were delivered by two instructors, which may have caused additional
confusion. Another much more troubling issue was linked to the Karel environment that proved to be
unstable. During normal work, the environment may suddenly abort, without saving the current
project. In such cases, all the work performed was lost. Due to the course structure, in which the Karel
environment was used throughout the whole semester, the stability issues became of a great
importance, unfortunately with a negative impact. During the first half of the semester, while the
examples and exercises were relatively simple, everything worked fine. However, during the second
half, when the exercises became more complicated and the students had to define many new
procedures the environment turned out to be unstable. This problematic behavior translated into many
lost hours and turned into a frustrating issue. As a consequence some students preferred to stop using
the environment, even at the expense of decreased understanding and a lower grade.

Based on Python's success in other institutes, the decision was made to continue using Python
as the first programming language, and replace the supporting visualization environment. On the third
semester, a second version of the course structure was employed. "Karel the Robot" was replaced by
GvR (Guido van Robot) a Python based implementation of "Karel the Robot". This is an open source
product that can be downloaded freely and installed on the students' computers, supporting a variety of
platforms. As part of the preparations for the course a long and intense benchmark was carried and
several problems that were discovered in the product were corrected. For enhancing understanding the

305

two courses were delivered by the same instructor, which allowed for better integration between the
two courses and relating smoothly from one course concepts to the other. This change was very
successful and the number of failing students, in this version of the course, was reduced by 63.5%,
from 45.8% of failing students to 16.7% (Figure 2).

Due to the author's experience with individual and unique assignments (Yadin and Or-Bach,
2008; Yadin, 2011), it was decided to implement this tactic as well. This was done mainly, in an effort
to further reduce the failing students' percentage. The last version of the course was very similar, with
only one change. The support course (the GvR Micro-world), which included several assignments and
contributed 10% to the CS1 course grade was changed to use individual and unique assignments. This
type of assignments is based on individual assignments, which means that the students cannot share or
borrow solutions with/from their friends. Each exercise is unique, so students can only discuss among
themselves the algorithms; since each student receives a different assignment one student solution is
irrelevant to the other. This change was successful and reduced failing students' percentage by
additional 41.6%, from 16.7% to 9.8% (Figure 2).

Figure 2. Failing Students Percentage

Table 1 summarizes the 3 versions of the course structure, including the main attributes of

each version, the weaknesses and the results obtained by utilizing it.

Table 1. Course's versions summary
Ver. Years Tools Instructors Weakness Failing %
1 2009 Python & "Karel

the Robot"
2 instructors one

for Python and one
for Karel

Karel Stability
issues that

hampered usage
and understanding

43.1% on 1st usage
of this version,
45.8% on 2nd

2 2010 Python & GVR,

ordinary
assignments

1 instructor for both
Python and GVR

 16.7%

3 2011 Python & GVR,
individual

assignments

1 instructor for both
Python and GVR

 9.8%

V. .RESULTS AND DISCUSSION

This paper describes an action research study that was performed in order to help students
cope better with the difficulties related to introductory programming courses by improving their

306

algorithmic thinking and problem solving skills. The original structure, which used Python and was
based on a standard 3 hours lecture, followed by a 2 hours exercise and an additional 2 hours Micro-
world lecture/lab was slightly modified. The last and more successful structure used same general
components; however, the visual environment in the support course was replaced. In addition, the
assignments as part of the support course emphasized individual learning in a cooperative
environment, which added another level of success. During the four semesters of this action research,
the students' failing percentage was dropped by 77.4% (from 43.1% to 9.8%).

The issues raised by this action research support similar findings presented in other papers that
adding a visualization environment (Micro-world) improved the students' operational knowledge. In
the first version of the course, the visualization environment was not successful; however it was
related to stability issues with that environment, which lead to many students abandoning it. The net
result was that the students enhanced their mental models by developing abstract knowledge related to
programming concepts and algorithms for solving problems, instead of concentrating on syntax issues.
This was evident, because the exam concentrates on algorithmic issues and not just syntax. Succeeding
in the exam is possible only for students who understand the principles and are capable to solve
problems. The use of the GvR Micro-world provided additional insight into the process. The
importance of visual environments especially when dealing with abstract concepts is not new and was
already addressed by many researchers (Papert, 1980; Dagdilelis and Satratzemi, 2001; Hoyles, Noss
& Adamson,2002; Sarama & Clements, 2002 to name a few). However, this action research
demonstrated the importance of these environments and a direct link between them and the actual CS1
course. The 77.4% improvement in the failing percentage may be attributed to the fact we used the
Micro-world environment during the whole the semester, while, in many academic institutes, where
Micro-worlds are integrated into the CS1 course they are being used only for the first one or two
lectures.

The impact of using the Micro-world was intensified by the fact it created a semester long
team based collaboration. Although each student had to work individually on his/her assignments, in
the lab, there were sub-groups who worked and learned together, as was evident by the fact they used
same seats throughout the whole semester. This supports similar findings by many researches that
group learning helps students build their understanding more efficiently (Beckman, 1990; Cooper et
al., 1990; Goodsell, et al., 1992). The lab exercises provided an additional way of collaboration, since
it acted as a foundation for discussions regarding various solutions and the benefits and shortcomings
of each one. The success attributed to using individual and unique assignments support similar
findings and it contributed to further lowering the failing rate.

The reasons behind the fluctuations in the number of enrolled students are unknown. It may,
however, be related to the high percentage of failing students. This is a relatively small regional
college and the information, especially in the social networks era is spreading fast. There is some
correlation between the failing percentage and the reduction in the enrolment. However, this issue will
have to be monitored in the future, before it will become conclusive.

References

[1] Anderson, J. R. (1980) Cognitive Psychology and its Implications, San Francisco: Freeman.
[2] Barr, R. and J. Tagg (1995) “From Teaching to Learning-a New Paradigm for Undergraduate Education”, Change

Magazine, Nov/Dec, pp. 13-25.
[3] Becker. B (2001): Teaching CS1 with Karel the Robot. Proc. ACM SIGCSE 32nd Technical Symposium on

Computer Science Education, Charlotte NC. 50-54 ACM Press.
[4] Beckman, M. (1990) "Collaborative Learning: Preparation for the Workplace and Democracy", College Teaching,

38(4), 128-133.
[5] Bell, S. and A. Lane. (1998) “From Teaching to Learning: Technological potential and sustainable, supported open

learning“, Systemic Practice and Action Research, 11(6), pp. 629-650.
[6] Bergin, J., Stehlik, M., Roberts, J., Pattis, R: Karel J. (2005).Robot: A Gentle Introduction to the Art of Object

Oriented Programming. Dream Songs Press. http://csis.pace.edu/~bergin/KarelJava2ed/Karel++JavaEdition.html.
[7] Biggs, J.B. (2003) Teaching for Quality Learning at University, Second edition, Buckingham, Open University Press,

Open University Press/Society for Research into Higher Education
[8] Robins, A., Rountree, J., & Rountree, N. (2003). Learning and teaching programming: A review and discussion.

Computer Science Education, 13(2), 137-172.

http://csis.pace.edu/~bergin/KarelJava2ed/Karel++JavaEdition.html�

307

[9] Buck, D., Stucki, B (2001): JKarelRobot: A Case Study in Supporting Levels of Cognitive Development in the
Computer Science Curriculum. Proc. ACM SIGCSE 32nd Technical Symposium on Computer Science Education,
Charlotte NC. 16-20 ACM Press.

[10] Cannara, A. B. (1976). “Experiments in Teaching Children Computer Programming.” Technical Report No. 271.
Institute for Mathematical Studies in the Social Sciences, Stanford University, 1976.

[11] Cooper, J. (1990) "Cooperative Learning and College Teaching: Tips from the Trenches", Teaching Professor, 4(5),
pp.1-2.

[12] Dagdilelis, V., and Satratzemi, M. (2001). Post's Machine: A Didactic Microworld as an Introduction to Formal
Programming, Educational and Information Technologies, 6(2), 123-141

[13] Dillon, A. (1987) “Knowledge Acquisition and Conceptual Models: A Cognitive Analysis of the Interface” in Diaper,
D. and R. Winder (eds.) People and Computers III, Cambridge, UK: Cambridge University, pp. 371-379.

[14] DuFour, R., R. Eaker, and R. DuFour (2005) On common ground: The power of professional learning communities,
Bloomington, IN: Solution Tree.

[15] Feurzeig, W., & Lukas, G. (1972). Logo: A programming language for teaching mathematics. Educational
Technology, March, 1972.

[16] Fischer, G. (1973). Material and ideas to teach an introductory programming course using Logo. Irvine, Calif.:
Department of Information and Computer Science, U. C. Irvine, 1973.

[17] Forsyth, A. I, Keenan, T. A. Organick, E. I., and Stenberg W. (1975), Computer science: A first course, John Wiley,
1975.

[18] Futschek, G. (2006) Algorithmic Thinking: The Key for Understanding Computer Science. In
[19] Lecture Notes in Computer Science 4226, Springer, pp. 159 - 168.
[20] Goodsell, A., M. Maher, V. Tinto, L. Smith, & J. MacGregor (eds.) (1992) Collaborative Learning: A Sourcebook for

Higher Education. University Park: National Center on Postsecondary Teaching, Learning, and Assessment,
Pennsylvania State University.

[21] Guzdial, M. (2003) Media Computation Course for Non-Majors. ITiCSE Proceedings. P104-108 .ACM. NY.
[22] Herrmann, N., Popyack, J. L., Char, B., Zoski, P., Cera, C. D., Lass, R. N., et al. (2003). Redesigning introductory

computer programming using multi-level online modules for a mixed audience, 34th SIGCSE technical symposium on
computer science education (pp. 196-200). Reno, Nevada, USA: ACM Press.

[23] Hogle, J. (1995). Computer Microworlds in education: Catching up with Danny Dunn. (ERIC Document Reproduction
Service No. ED 425738). http://www.eric.ed.gov/ERICWebPortal/contentdelivery/servlet/ERICServlet?
accno=ED425738 Accessed February 2011

[24] Hoyles, C., Noss, R. & Adamson, R. (2002). Rethinking the Microworld idea. Journal of Educational Computing
Research, 27(1&2), 29-53.

[25] Johnson, D. W., R.T. Johnson, and K.A. Smith (1991) Cooperative Learning: Increasing College Faculty Instructional
Productivity. ASHE-FRIC Higher Education Report No.4, Washington, D.C.: School of Education and Human
Development, George Washington University.

[26] Johnson, K. (1995) Language Teaching and Skill Learning, Oxford, Basil Blackwell.
[27] Miller, B. N., and Ranum, D. L. (2005)., Teaching an introductory Computer Science Sequence with Python.

Proceedings of the 38th Midwest Instructional and Computing Symposium, Eau Claire, Wisconsin, USA, 2005.
[28] Nagappan, N., Williams, L., Ferzli, M., Wiebe, E., Yang, K., Miller, C., et al. (2003). Improving the CS1 experience

with pair programming, 34th SIGCSE technical symposium on computer science education (pp. 359-362). Reno,
Nevada, USA: ACM Press.

[29] Nikula U., Sajaniemi J., Tedre M., Wray S. (2007) Python and Roles of Variables in Introductory Programming:
Experiences from three Educational Institutions. Journal of Information Technology Education, 6, 199-214. Available
at http://jite.org/documents/Vol6/JITEv6p199-214Nikula269.pdf Accessed January 2011

[30] Papert, S., (1980). Mindstorms: Children, Computers and Powerful Ideas, Nova York: Basic Books
[31] Pattis, R.E. (1981): Karel the Robot: A Gentle Introduction to the Art of Programming. John Wiley & Sons Inc. New

York, NY, USA.
[32] Prince, M. (2004) “Does Active Learning Work? A Review of the Research”, Journal of Engineering Education, 93(3),

pp. 223-231.
[33] Radenski, A. (2006). "Python first": A lab-based digital introduction to computer science, 11th annual SIGCSE

conference on innovation and technology in computer science education (pp. 197-201). Bologna, Italy: ACM Press.
[34] Rich, L., Perry, H., & Guzdial, M. (2004). A CS1 course designed to address interests of women, 35th SIGCSE

Technical Symposium on Computer Science Education (pp. 190-194). Norfolk, Virginia, USA: ACM Press.
[35] Roberts, E. S., (1995). The Art and Science of C: A Library-Based Approach, Reading, MA: Addison-Wesley, 1995
[36] Rubinstein, R (1974). Computers and a liberal education: Using Logo at the undergraduate level. Irvine, Calif.:

Department of Information and Computer Science, U. C. Irvine, 1974.
[37] Sarama, J. & Clements, D. (2002). Design of Microworlds in mathematics and science education. Journal of

Educational Computing Research, 27(1&2), 1-5.
[38] Squire, L.R. (1987) Memory and Brain. New York: Oxford University Press.
[39] Webster, R. and F. Sudweeks (2006) "Enabling Effective Collaborative Learning in Networked Virtual

Environments", Current Developments in Technology-Assisted Education, (2) pp.1437-1441.
[40] Yadin, A., "Reducing Students' Dropout – The Case of Individual Assignments". eLSE 2011 - The 7th International

Scientific Conference - eLearning and Software for Education – Bucharest, Romania, April 2011 (2), pp 297-302
[41] Yadin, A and Or-Bach, R., (2008). Fostering individual learning: when and how. ACM SIGCSE Bulletin 40(4): 83-86
[42] Zhi-Feng, E., S. Liu, C. Chi-Huang, and Y. Shyan-Ming (2001) “Web-Based Peer Review: The Learner as Both

Adapter and Reviewer”, IEEE Transactions on Education, 44(3), p. 246.

http://www.eric.ed.gov/ERICWebPortal/contentdelivery/servlet/ERICServlet?%20accno=ED425738�
http://www.eric.ed.gov/ERICWebPortal/contentdelivery/servlet/ERICServlet?%20accno=ED425738�
http://www.eric.ed.gov/ERICWebPortal/contentdelivery/servlet/ERICServlet?%20accno=ED425738�

	Page 2
	2 Volumul II partea I continuare finala.pdf
	Bucharest, April 26-27, 201
	Challenges of Implementing a Large-Scale eLearning and Collaboration Platform - the DIAS Project, Cyprus
	I. .Project description
	II. .The components of the project
	III. Conclusions
	Bucharest, April 26-27, 2012
	A SIMPLE GRAPHICAL FRAMEWORK FOR THE ACQUISITION OF BASIC C PROGRAMMING SKILLS
	[3] Thorn, A., 2005. DirectX 9 Graphics: The Definitive Guide to Direct 3D, Wordware Publishing, Inc., ISBN-10: 1-55622-229-7
	Bucharest, April 26-27, 2012
	ROLE MODELS OF INTERACTIVE LESSONS IN TEACHING PHYSICS
	Bucharest, April 26-27, 2012

